Supplementary Table 1. Compositional groups, typical sample numbers and location with their bulk compositional, mineralogical and petrographic characteristics at different metamorphic grades.

Metamorphic grade	Compositio nal Group	Sample #s, N/E Traverse, GPS coordinates	Bulk Chemical Characteristics	Mineral assemblage, mode and mineral chemistry	Texture and other comments
Chlorite	Normal	#1/00, E, 27°11.268, /88°38.581 #187/01, 187/3, 187/3/CHAKRA , N, GPS not known	Two compositional groups (one richer in Al ₂ O ₃ ~25 wt.%, another ~20 Wt.%). Rocks richer in Al ₂ O ₃ are relatively less ferruginous (see Fig 3).	Ms-Chl-Qtz-Ilm-Mag-Gr \pm Kfs \pm Pl Mode: (Qtz 35-42%, Ms 30 - 33%, Chl 25 - 30%, Pl 5-7%). Lithology: Chlorite quartz phyllite (minor white mica), white mica quartz phyllite (minor chlorite) and chlorite bearing quartzite. Muscovite: Paragonite 5%, Pyrophyllite 19%, Celadonite 12%, Fe-celadonite 13%. Chlorite: X_{Mg} (Mg/(Mg+Fe(tot)) = 0.37 - 0.41. Plagioclase: X_{An} = 0.03	Millimeter to centimeter scale banding into M-domain (mica + chlorite rich), grain size 2 - 20 □m and Q - domain (quartz - feldspar rich), grain size 10 - 50 μm.

		T	T	T	
		#ID/00,E,		Ms-Chl-Qtz-Bt - Pl \pm Ilm \pm Tur \pm Gr	
		27°11.268,			
		/88°38.581		Chl - Qtz - Ms - Ilm -Gr - Tur - Bt - Pl	
		#2/00, E,	Two subgroups -		
		27°11.465,	high Al, low Fe (18		
		/88°38.650	- 24 wt% Al ₂ O ₃ , -	Mode: (Qtz 35-42%, Ms 30 - 33%, Bt 15 - 18%, Chl	
			4.5-5 wt% Fe ₂ O ₃)	10 - 12%, Pl 5-7%).	Pervasive foliation defined
		#3/00, E,	and low Al, high Fe		by biotite, white mica,
		27°11.465,	(14.5 - 17 wt%		chlorite and occasional
		/88°38.692	Al ₂ O ₃ , 6.0 - 8.0 wt%	Muscovite:	ilmenite (S ₂) almost parallel
			Fe_2O_3).		to compositional banding
		#4/00, E,	Some with high	Paragonite 10 -15%, Pyrophyllite 22 - 28%,	(S_0) . S_2 is crenulated to S_3
D: 414		27°11.484,	MnO (0.37 - 0.59	Celadonite 6 -9%, Fe-celadonite 6-14%.	defned by new generation
Biotite	Normal	/88°38.858	wt%). SiO ₂ variable	,	of biotite, ilmenite and
			indicating	Biotite:	elongated quartz in Q -
		#167/01, N,	interbanding of		domains. Some coarser
		27°26.092,	variable amounts of	$X_{\text{Mg}} = 0.38, X_{\text{Fe}} = 0.45, X_{\text{Ti}} = 0.03, X_{\text{(AlVi)}} = 0.14.$	biotite, chlorite as well as
		/88°30.888	psammitic material,	ing the state of t	plagioclase cross cut all
			TiO ₂ relatively	Chlorite:	foliations and appear to be
		#176/01,N,	constant (0.55 - 0.8		post-tectonic.
		27°24.809,	wt% for most	$X_{Mg} (Mg/(Mg+Fe(tot)) = 0.45.$	post tectome.
		/88°30.935	samples).	11Mg (1115/1115/110(100)) = 0.10.	
		700 00.000	bailipios).	Plag:	
		#170/01,N,		1 145.	
		27°24.809,		$X_{\rm An} = 0.03$	
		/88°30.925		21An - 0.03	
		700 30.323			

Biotite	Magnesian (Normal - biotite)	#1/00/A, E, 27°11.268, /88°38.581	MgO ~ 5 wt%.	Chlorite - quartz - plagioclase \pm muscovite Muscovite: Paragonite 7 - 12%, Pyrophyllite 16 - 33%, Celadonite 11 - 13%, Fe-celadonite 12%. Chlorite: $X_{Mg} (Mg/(Mg+Fe(tot)) = 0.65.$ Plagioclase: $X_{An} = 0.1$	Foliation defined by chlorite and white mica; crenulation by second generation white mica.
---------	------------------------------------	---	--------------	--	--

Biotite	Mn-rich (Normal + Grt)	# 1C/00/3, E 27°11.288, /88°38.619	MnO ~ 0.4 wt%, ~ 10 x other bulk compositions.	Ms - Chl - Qtz - Pl - Grt - Mag - Ilm - Gr. Garnet: Concentric growth zoned with Mn and Ca decreasing to rim compensated by increase of Fe and Mg. Core: Sps ₅₀ Alm ₃₄ Prp ₃ Grs ₁₃ Rim: Sps ₂₀ Alm ₆₃ Prp ₀₇ Grs ₁₀ Muscovite: Paragonite 14%, Pyrophyllite 15%, Celadonite 6%, Fe-celadonite 15%. Chlorite: X _{Mg} (Mg/(Mg+Fe(tot)) = 0.47; Mn-rich with 0.5 - 0.6 wt% MnO (= 10x other rocks). Plagioclase porphyroblasts reverse zoned, unlike in other rocks, from An ₂₆ (core) - An ₁₀ (rim).	150 - 200 μm euhedral garnet porphyroblasts set in external S ₂ fabric defined by white mica. Elongate quartz and opaque inclusions near core of garnet define an internal fabric (? S ₁) at high angles to the external fabric. Coarse plagioclase as well as later generation of mica and chlorite cut across main foliation. Quartz is coarse, polygonal in Q-domains and elongate in M-domains.
---------	------------------------------	--	--	--	--

Garnet	Normal Aluminous, high Fe	#8/00, E, 27°11.616, /88°39.131; #158/01, N, 27°27.711, /88°31.400 #24/99/1, N, 27°27.292′, /88°31.63	Low alumina as well as high alumina compositions represented; some Mn rich and Mg rich bulk compositions found without profound effects on mineral assemblages at these grades.	Mode: (Qtz 26-30%, Ms 35-40%, Bt 8-15%, Chl 8%, Grt 1-3%, Pl 5-8%) Garnet: Concentrically zoned, typical core: Alm ₇₂ Prp ₀₅ Grs ₀₆ Sps ₁₇ , typical rim: Alm ₈₁ Prp ₀₅ Grs ₀₄ Sps ₁₀ . Total range found: Alm ₆₈ . $_{80}$ Prp ₄₋₁₆ Grs ₆₋₁₆ Sps ₂₋₁₇ . In rocks without plagioclase, garnet is more calcic: Alm ₆₅₋₆₈ Prp ₀₃ Grs ₁₈₋₂₁ Sps ₁₄ . Biotite at contact with garnet: $X_{Mg} = 0.28$, $X_{Fe} = 0.47$, $X_{Ti} = 0.01$, $X_{(AlVI)} = 0.24$. Ilmenite included in garnet has higher Mn content (= 5 mol% pyrophanite vs. 3mol% in matrix). Chlorite: $XMg = 0.36 - 0.39$, lower than in lower grades. Muscovite: Paragonite 11%, Pyrophyllite 21%, Celadonite 6%, Fe-celadonite 6%. Plagioclase: $X_{An} = 0.1$	Garnet preferentially develops in graphitic schists. S2 defined by Muscovite, chlorite and biotite wrap around garnet porphyroblasts. Marked decrease in modal abundance of chlorite in garnet rich areas. S2 often forms sigmoidal inclusion trails in garnet, some garnets include an inner trail of S1 that is straight and truncated by S2. Magnesian bulk compositions (e.g. #19/99) have lower modal abundance of garnet compared to Fe-rich (e.g. #24/99) samples.
--------	----------------------------	---	---	--	--

Garnet	Ferruginous (Normal + Chltd)	#7/00/R4 & 7/00/R/6, E, 27°11.616, /88°39.131 #135/01, E, GPS not known	Similar in Mn and even lower in Al content to garnet bearing rocks from the same outcrop (e.g. #8/00). Fe/Mg ratio - higher Fe contents - favor appearance of chloritoid.	$Ms - Cld - Qtz - Chl - Bt - Ilm \pm Gr \pm Grt$ $Mode: (Qtz 35-40\%, Cld 12 - 16\%, Grt 4-8\%, Chl 8 - 16\%, Ms 20 - 22\%, Bt 8-10\%, Pl 6-10\%).$ $Cld: X_{Mg} = 0.1$ $Chlorite: X_{Mg} = 0.25$ $Biotite: X_{Mg} = 0.39, X_{Ti} = 0.04, X_{(AlVI)} = 0.18.$	Chloritoid porphyroblasts may be aligned along S ₂ or S ₃ foliation. Ilmenite is often included in chloritoid. In one case chloritoid and garnet occur in the same thin section but in different domains - chloritoid occurs in more muscovite rich domains. There is a single chloritoid inclusion in a garnet in #135/01.
Garnet	Low Potassic (semi - pelite) (Normal - Musc	#10/00, E, 27°11.628, /88°39.459;		Chl - Qtz - Grt - Pl - Bt - Ap - Ilm $Garnet:$ $Alm_{80}Prp_{12}Grs_{04}Sps_{04}, \ even \ richer \ in \ almandine \ (82)$ at the rim. $Biotite:$ $X_{Mg}=0.28, \ X_{Fe}=0.55, \ X_{Ti}=0.03, \ X_{(AlVI)}=0.14.$ $Chlorite: \ XMg=0.36.$ $Plagioclase:$ $X_{An}=0.15-0.17.$	Chlorite - garnet - plagioclase rich rock with chlorite and biotite defining S ₂ foliation. Euhedral garnet overprints, and sometimes deflects, this foliation.

Staurolite	Normal	#17/00, E, 27°12.064, /88°41.397	Equivalent of low alumina pelites from lower grades.	$Ms - Qtz - St - Pl - Bt - Ilm - Grt$ $Mode: (Qtz 35 - 44\%, Ms 15 - 17\%, Bt 18 - 22\%, St 9 - 11\%, Grt 5 - 10\%, Pl 5 - 10\%).$ $Garnet:$ $Core: Alm_{63}Prp_{12}Grs_{08}Sps_{17},$ with well preserved growth zoning. Increase of Mn content at the very rim. $Muscovite:$ $Paragonite 17\%, Pyrophyllite 12\%, Celadonite 5\%, Fe-celadonite 10\%.$ $Biotite:$ $X_{Mg} = 0.4, X_{Fe} = 0.42, X_{Ti} = 0.02, X_{(AIVI)} = 0.16.$ $Staurolite:$ $X_{Fe} = 0.78.$	Muscovite and biotite define foliation (S ₂). Sigmoidal inclusion trails of S ₂ , including ilmenites, within staurolite and garnet. Foliation wraps around porphyroblasts.
------------	--------	--	--	---	--

Staurolite	Aluminous (Normal + kyanite)	#11/00, E,		$\begin{split} &\text{Ms -Bt -Grt -St - Ky - fibrolite -Grt - Ilm - Qtz \pm} \\ &\text{Cld, secondary Chl. Some locations contain} \\ &\text{abundant and strongly zoned Tur.} \\ &\text{Garnet:} \\ &\text{Core:} \\ &\text{Alm}_{83} \text{Prp}_{09} \text{Grs}_{06} \text{Sps}_{02}, \\ &\text{distinctly poorer in Mn and only weakly zoned} \\ &(\Box X_{\text{Alm}} \sim \Box X_{\text{prp}} \sim 0.02). \\ &\text{Muscovite:} \\ &\text{Paragonite 18\%, Celadonite 4.5\%,} \\ &\text{Fe-celadonite 7.5\%.} \\ &\text{Biotite:} \\ &X_{Mg} = 0.34, X_{Fe} = 0.45, X_{Ti} = 0.05, X_{(\text{AIVI})} = 0.16. \\ &\text{Plagioclase:} \\ &X_{An} = 0.2. \\ &\text{Staurolite:} \\ &X_{Fe} = 0.82 - 0.86 \\ &\text{(included chloritoid has } X_{Fe} = 0.85). \\ \end{split}$	Muscovite and biotite define S ₂ , garnet and staurolite include sigmoidal trails of S ₂ , kyanite is coarse prismatic. Rare chloritoid inclusion in garnet coexisting with staurolite. Tourmaline can define folded inclusion trails in staurolite sometimes. Fibrolite often surrounds garnet, biotite with ilmenite, can be folded into crenulations occasionally.
------------	------------------------------------	------------	--	--	---

Staurolite	Calcic (Normal - Staurolite)	#14/00, E, 27°12.174, /88°41.026	CaO = 3.7 wt% compared to general range of 0.15 - 0.52 %.	Ms - Bt - Qtz - Pl - Grt - Ilm Garnet: Exceptionally rich in Sps and Grs in Core: $Alm_{50}Prp_{09}Grs_{14}Sps_{27},$ with well preserved growth zoning. Plagioclase rich in An: $X_{An} = 0.34$	Abundant garnet and plagioclase; in spite of high Al as well as Zn content, Staurolite does not appear, indicating that its appearance is controlled by Ca (e.g. Spear and others 1995).
------------	---	--	---	---	--

Staurolite	Mn - poor (Normal, with Mn poor garnet)	#15/00, E, 27°12.157, /88°41.137 #16/00, E, 27°12.100, /88°41.250		$\begin{aligned} &\text{Ms - Qtz -St - Pl - Bt - Ilm - Grt} \\ &\text{Garnet:} \\ &\text{Core:} \\ &\text{Alm}_{73}\text{Prp}_{05}\text{Grs}_{13}\text{Sps}_{09}, \\ &\text{Rim:} \\ &\text{Alm}_{84}\text{Prp}_{10}\text{Grs}_{5.5}\text{Sps}_{0.5}. \\ &\text{Muscovite:} \\ &\text{Paragonite 17\%, Pyrophyllite 12\%, Celadonite 5\%, } \\ &\text{Fe-celadonite 10\%.} \\ &\text{Biotite:} \\ &X_{Mg} = 0.4, X_{Fe} = 0.42, X_{Ti} = 0.02, X_{(AlVI)} = 0.16. \\ &\text{Staurolite:} \\ &X_{Fe} = 0.85. \\ &\text{Plagioclase:} \\ &X_{An} = 0.2. \end{aligned}$	
------------	--	--	--	--	--

Staurolite	Fe-rich? (Normal - garnet)	#129/87, GPS not available		$Ms - Qtz - St - Pl - Bt - Ilm.$ $Ms \& Bt similar to normal pelite.$ $Staurolite, highly abundant:$ $X_{Fe} = 0.83.$ $Plagioclase:$ $X_{An} = 0.2 - 0.22.$	
Kyanite	Normal	#19/00, E, 27°12.135, /88°41.778 #SIN8,N,GPS not available #27/99/1,N, 27°30.906, /88°33.981 #27/99/3,N, 27°30.906, /88°33.981	Low Al, high Fe as well as high Al, low Fe groups are represented. Bulk composition shows the widest spread in this zone. One exceptionally Mn rich (MnO = 1.1 wt%) sample was found. Three samples (#Sin8, 19/00/1, 18/00) contain high CaO (1.2 - 1.4 wt% compared to 0.4 -0.8 wt% for the rest).	Grt - Bt - Pl - Qtz - Ms ± St (only as included phase) - Ky - Ilm. Mode: (Qtz 42-45%, Ms 15-17%, Bt 12 - 20%, Ky 4-8%, Grt 4-8%, Pl 10 - 15%). Garnet: Core: Alm ₇₂ Prp ₁₆ Grs ₁₁ Sps ₀₁ , Rim: Alm ₈₃ Prp ₀₆ Grs ₀₅ Sps ₀₆ . Large variations, with nearly homogeneous grains to complexly zoned crystals, where internal S-shaped compositional zoning bands follows inclusion trails, surrounded by an external concentric zoning . Overall range in garnet composition: Alm ₇₀₋₈₅ Prp ₀₄₋₁₆ Grs ₀₃₋₁₁ Sps ₀₁₋₀₆ .	Kyanite, muscovite and biotite define foliation (S ₂) that is folded (S ₃) at places. Modal abundance of garnet varies widely. Sigmoidal inclusion ridden garnet cores are overgrown by euhedral garnet. Biotite-fibrolite mattes are locally found. Rare staurolite inclusions in garnet. Modal abundance of kyanite correlates with Al content, that of garnet with Fe content of bulk rock.

Muscovite: (Note low paragonite content)	
Paragonite 9%, Pyrophyllite 3%, Celadonite 9%, Fe-celadonite 4%.	
Biotite:	
$X_{Mg} = 0.5, X_{Fe} = 0.4, X_{Ti} = 0.05, X_{(AlVI)} = 0.05.$	
Plagioclase:	
$X_{An} = 0.44.$	
Included Staurolite:	Quartz - plagioclase bearing
$X_{Fe} = 0.73.$	leucosomes develop often with a biotite rich restite
Qtz - Plag bearing leucosomes with garnet:	part. In one case, euhedral garnets are found in the
Garnet:	leucosome (with different composition and zoning
Concentric zoning, Mg increases from core to rim	from the usual garnets), when there are none in the
compensated by Fe; growth zoning of Mn partly preserved, sharp increase of Mn at rim.	biotite rich restitic part. The
$Alm_{76\text{-}81} Prp_{9\text{-}12} Grs_{05\text{-}10} Sps_{02\text{-}05}.$	plagioclase in this part is also more sodic than usual.
Plagioclase: $X_{An} = 0.2$.	
Biotite in restitic part:	

				1.8 wt% TiO ₂ . $X_{Fe} = 0.50 - 0.55$, $X_{Mg} = 0.32 - 0.28$, $X_{Ti} = 0.03$, $X_{Al(VI)} = 0.15 - 0.18$.	
Kyanite	Aluminous (Normal - Grt)	#19/00/1, E, 27°11.955, /88° 41.514		Qtz - Ms - Bt - Pl - Ky - Ilm Mineral chemistry similar to above.	Other than absence of garnet, similar to above. Widespread and occurs in close proximity with the normal pelites. In compositional space a continuum is found, where the boundary has been drawn here based on appearance of garnet.
Kyanite	Mn - rich	#18/00, E, 27°11.955, /88° 41.514 #18/00/2, E, 27°11.955, /88° 41.514	MnO highly enriched, upto 1 wt%.	Qtz - Pl - Ms -Bt - Grt - Ilm \pm Ky \pm St. Garnet: $Alm_{57}Prp_{13}Grs_{08}Sps_{17}.$	Micas define foliation (S ₂). Unique texture with many euhedral to subhedral garnets dotting the quartzofeldspathic as well as micaceous layers giving the appearance of post-tectonic growth.

		Normal	27°12.195, /88°42.29; #29/99 & M4, N, 27°31.757,	Fe and high Fe, low Al groups represented. No Mn	Typical Rim: $Alm_{84}Prp_{12}Grs_3Sps_{01}.$ Total spread: $Alm_{76-84}Prp9{15}Grs_{3-11}Sps_{0-6}.$ Biotite: $X_{Fe}=0.49,\ X_{Mg}=0.31,\ X_{Ti}=0.04,\ X_{(ALVI)}=0.16.$ Muscovite: $Paragonite\ 11\%, \\ Pyrophyllite\ 13\%, \\ Celadonite\ 8\%, \\ Fe-celadonite\ 7\%.$ Plagioclase:	presence of fibrolite (replacing muscovite and biotite). Muscovite, biotite and sillimanite define main foliation (S ₂). Garnet has inclusion ridden cores and inclusion free, idioblastic
--	--	--------	--	--	---	--

				O. D. K. D. C. I	
Sillimanite - K- Feldspar	Normal	#29/00, E, 27°12.695, /88°43.436	Both low Al, high Fe and high Fe, low Al groups represented. No Mn rich samples found.	Qtz - Bt - Kfs -Pl - Sil \pm Grt - Ilm. Garnet: $Alm_{60\text{-}79}Prp_{11\text{-}25}Grs_{2\text{-}14}Sps_{2\text{-}5}.$ Garnets preserve some growth zoning, with diffusion zoning at the rims. Many garnets have grown by coalesence from several nucleii (seen in element maps, e.g. Fig. 5d). Therefore, difficult and not meaningful to provide geometric core and rim compositions. Small, resorbed garnets from leucosomes are exceptionally enriched in Mn: $Alm_{60}Prp_{17}Grs_{03}Sps_{20}.$ Biotite (adjacent or removed from garnet): $X_{Mg} = 0.39, X_{Fe} = 0.42, X_{Ti} = 0.05, X_{AIVI} = 0.14.$ K-feldspar (sometimes pethitic, re-integrated): $Or_{66\text{-}73}Ab_{27\text{-}34}.$ Plagioclase: $X_{An} = 0.24.$	Migmatitic rock with leucosomes (quartz - K-feldspar - minor plagioclase - occasional small euhedral garnets) and mesosomes (garnet - biotite - sillimanite). Biotite and sillimanite define main foliation (S ₂).