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Figure S1: Spectral decomposition of the Phanerozoic record.
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Figure S2: Model δ13C response to sinusoidal modulation of parameters with a period of 1 m.y. The flux being modulated in each instance
is denoted by the name of the flux in the upper part of the subplot (e.g. Fv). Modulation of a flux coefficient is denoted by the name of
the rate parameter (e.g. kwp). The resulting δ13C output is given as a function of time. Frequency and amplitude combinations resulting
in non-physical reservoir values (negative mass) were not plotted.
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Figure S3: As in previous figure but with a period of the forcing of 10 m.y.
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Figure S4: As in previous figure but with a period of the forcing of 100 m.y.
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Figure S5: Model δ13C frequency response to sinusoidal modulation of parameters. Modulation of a flux is denoted by the name of the
flux (e.g. Fv). Modulation of a flux sensitivity is denoted by the name of the rate parameter (e.g. kwp). Amplitude of the resulting
δ13C oscillations on the y axis, frequency on the lower x-axis, and period of the forcing on the upper x-axis. Frequency and amplitude
combinations resulting in non-physical reservoir values (negative mass) were not plotted, hence the truncation of some lines.
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4 Descriptive statistics of Phanerozoic δ13C Data

Period Duration [M.yr.] Number of Average data Data density
unique data points spacing [yr] [points/M.yr.]

Cenozoic 66.18 27259 4125 242
Cenozoic (downsampled) 66.18 481 135,536 7.4
Cretaceous 80.18 229 350,162 1.6
Jurassic 54.51 238 229,035 4.3
Triassic 50.58 595 85,479 11.76
Permian 46.72 414 113,123 8.8
Carboniferous 60.05 1133 53,000 18.9
Devonian 60.25 900 66,945 14.9
Silurian 24.51 626 39,345 24.5
Ordovician 44.09 673 67,101 14.9
Cambrian 55.63 1984 28,053 35.6

Total 542.7 6564 119845 14.1

5 Model Values

Variable Name Steady State Value [mol] or [mol yr−1]

Mp 2x1015

Mc 3.8x1018

Fwp 3.6x1010

Fbp 3.6x1010

Fv 4x1012

Fws 4x1012

Fbo 12x1012

Fwo 12x1012

δ

Coefficient Name Calculated via Steady State Value [yr−1]

kwp Fwp/Mc 9.4737x10−9

kbp Fbp/Mp 1.8x10−5

kbo Fbo/Mp 6x10−3

kws Fws/Mc 1.0526x10−6

6 Derivation of Condition for Oscillations

The relationship between the coefficients and the behavior of the system can be formally established.
(See the appendix of [1], for a similar development in a climate modelling context. See [2], and
[3, 4], for related mathematical treatments in a geochemical context. See [5], for an approachable
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introduction to linear systems from a control theory standpoint and [6], for an introduction with a
mechanical and electrical engineering flavor.)

To establish the condition for oscillations we write our system of equations in matrix form:[
Ṁp

Ṁc

]
=

[
−kbp kwp

−kbo −kws

] [
Mp

Mc

]
+

[
0

Fv + Fwo

]
(1)

Or more compactly:
~̇M = K ~M + ~F (2)

We use arrows to indicate vectors and underlining to indicate matrices. The behavior of the system
is determined by the eigenvalues of the coefficient matrix:

K =

[
−kbp kwp

−kbo −kws

]
(3)

These can be calculated via the eigenvalue equation:

K~x = λ~x (4)

A nontrivial solution exists only when the determinant of λ I −K equals zero:∣∣∣∣λ+ kbp −kwp

kbo λ+ kws

∣∣∣∣ = (λ+ kbp)(λ+ kws) + kwp kbo = 0 (5)

The resulting characteristic polynomial is:

λ2 + (kbp + kws)λ+ kbp kws + kwp kbo = 0 (6)

Whose roots are given by:

λ1,2 =
−(kbp + kws)±

√
(kbp + kws)2 − 4 (kbp kws + kwp kbo)

2
(7)

Oscillatory solutions (complex eigenvalues) exist when the discriminant is less than zero:

(kbp + kws)
2 − 4 (kbp kws + kwp kbo) < 0 (8)

Gathering terms gives the condition for oscillations.

(kbp − kws)
2 < 4 (kwp kbo) (9)

6.1 Comparison with a Mass-Spring Harmonic Oscillator

In a mass-spring system the forces in operation are the force exerted on the mass by the spring,
and the friction operating on the mass. We assume that the force exerted by the spring is linearly
related to the displacement of the spring (Hook’s law), and the damping is linearly dependent on the
velocity of the mass. The sum of the two forces are equal to the change in momentum as expressed
by F = ma, or in its differential form:

− kx− cdx
dt

= m
d2x

dt2
(10)
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Since there is an equivalency between a large mass on a large spring and a small mass on a small
spring, it is convenient to introduce non-dimensional variables, the angular frequency and the
damping ratio:

ω0 =

√
k

m
ζ =

c

2
√
mk

(11)

The equation of motion then becomes:

d2x

dt2
+ 2ζω0

dx

dt
+ ω2

0x = 0 (12)

This equation can be converted to two first order differential equations by defining x1, position, and
x2, velocity:

dx1
dt

= x2 (13)

dx2
dt

= −2ζω0x2 − ω2
0x1

Writing the system in matrix form reveals the similarity to the carbon cycle oscillator model.[
ẋ1
ẋ2

]
=

[
0 1
−ω2

0 −2ζω0

] [
x1
x2

]
(14)

Here the “cross” terms are 1 and −ω2
0. The characteristic polynomial is:∣∣∣∣ λ −1

ω2
0 λ+ 2ζω0

∣∣∣∣ = λ2 + 2ζω0λ+ ω2
0 (15)

Oscillatory solutions (complex eigenvalues) exist when the discriminant is less than zero:

4ω2
0 (ζ2 − 1) < 0 (16)

Hence, when ζ < 1 the system will be underdamped and oscillate, whereas when ζ > 1 the system
will exhibit smoothly decaying solutions.
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