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Figure S1: Spectral decomposition of the Phanerozoic record.
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in non-physical reservoir values (negative mass) were not plotted.
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Figure S3: As in previous figure but with a period of the forcing of 10 m.y.
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4 Descriptive statistics of Phanerozoic §'*C Data

Period Duration [M.yr.] Number of Average data  Data density
unique data points  spacing [yr]  [points/M.yr.]
Cenozoic 66.18 27259 4125 242
Cenozoic (downsampled) 66.18 481 135,536 7.4
Cretaceous 80.18 229 350,162 1.6
Jurassic 54.51 238 229,035 4.3
Triassic 50.58 595 85,479 11.76
Permian 46.72 414 113,123 8.8
Carboniferous 60.05 1133 53,000 18.9
Devonian 60.25 900 66,945 14.9
Silurian 24.51 626 39,345 24.5
Ordovician 44.09 673 67,101 14.9
Cambrian 55.63 1984 28,053 35.6
Total 542.7 6564 119845 14.1

5 Model Values

Variable Name Steady State Value [mol] or [mol yr—!]

M, 2x101°
M, 3.8x10'8
Fup 3.6x10%0
Fyp 3.6x1010
F, 4x10'2
Fops 4x10"2
Fpo 12x10"2
Fouo 12x10'2
)

Coefficient Name Calculated via Steady State Value [yr™!]

Kwp Fup/M. 9.4737x10~
Kby Fyp/M, 1.8x107°
Epo Fyo/M, 6x1073
Ews Fos /M. 1.0526x10~¢

6 Derivation of Condition for Oscillations

The relationship between the coefficients and the behavior of the system can be formally established.
(See the appendix of [1], for a similar development in a climate modelling context. See [2], and
[3, 4], for related mathematical treatments in a geochemical context. See [5], for an approachable



introduction to linear systems from a control theory standpoint and [6], for an introduction with a
mechanical and electrical engineering flavor.)

To establish the condition for oscillations we write our system of equations in matrix form:
i R v R P 2
M. *kbo *kws M. Fy+ Fyo

M= KN+ F 2)

Or more compactly:

We use arrows to indicate vectors and underlining to indicate matrices. The behavior of the system
is determined by the eigenvalues of the coefficient matrix:

—kpp  kuwp }
= 3
|:_kbo _kws ( )

These can be calculated via the eigenvalue equation:

=

K# =\ (4)

A nontrivial solution exists only when the determinant of A\ I — K equals zero:

Ak —kwp | —
R (A + Epp) (A + Kws) + kwp ko =0 (5)
The resulting characteristic polynomial is:
A2+ (kip + Kuws) A+ Eip Kuws + Kuwp ko = 0 (6)

Whose roots are given by:

(kbp + kws) T \/(kbp + kws)z —4 (kbp kws + k;wp kbo)

A2 = — 5

Oscillatory solutions (complex eigenvalues) exist when the discriminant is less than zero:
(kbp + kuws)? — 4 (kbp kws + kup ko) < 0 (8)
Gathering terms gives the condition for oscillations.

(Kbp — kws)? < 4 (Fwp Kbo) 9)

6.1 Comparison with a Mass-Spring Harmonic Oscillator

In a mass-spring system the forces in operation are the force exerted on the mass by the spring,
and the friction operating on the mass. We assume that the force exerted by the spring is linearly
related to the displacement of the spring (Hook’s law), and the damping is linearly dependent on the
velocity of the mass. The sum of the two forces are equal to the change in momentum as expressed
by F' = ma, or in its differential form:

—krxr—c—=m—5 (10)



Since there is an equivalency between a large mass on a large spring and a small mass on a small
spring, it is convenient to introduce non-dimensional variables, the angular frequency and the

damping ratio:
k c
0=\, ¢=3 — (11)

The equation of motion then becomes:

d’x dx
=z T 2w+ wix =0 (12)

This equation can be converted to two first order differential equations by defining x1, position, and
T3, velocity:

d.?Ul

= 13
7 2 (13)
dl’z
- —2Cw0x2—w%x1

Writing the system in matrix form reveals the similarity to the carbon cycle oscillator model.

[ij - {—S«% —21@10] [ij (14)

Here the “cross” terms are 1 and —wg. The characteristic polynomial is:

A -1
wd A+ 2Cwo

‘ = A 4 2CwoX + Wi (15)
Oscillatory solutions (complex eigenvalues) exist when the discriminant is less than zero:
402 (C*-1)<0 (16)

Hence, when ¢ < 1 the system will be underdamped and oscillate, whereas when ¢ > 1 the system
will exhibit smoothly decaying solutions.
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